Hydrology of Clay Settling Areas and Surrounding Landscapes in the Phosphate Mining District, Peninsular Florida

9th INTECOL International Wetlands Conference

Mark Rains, Kathryn Murphy, Natalie Pechenik, Michael Kittridge, Mark Stewart, Ken Trout, and Mark Ross

Clay Settling Areas (CSAs)

 ~75% of nation's phosphate is mined in Florida

- Ore body is ¹/₃ clay-sized sediments
- Clay waste disposed of in CSAs, which are above-grade, rectangular reservoirs
- Clay remains saturated for decades
- Cover ~40% of the mined landscape (~50,000 ha. in 1998; ~70,000 ha. at build-out)
- Unknown water-resources consequences

Wetlands on CSAs¹

- Differential settling and clay-rich deposits create inundated local topographic lows
- Wetlands occupy substantial portions of local topographic lows
- Depressional wetlands predominate
- Floristically simple, with little recruitment of *Taxodium distichum* and *Nyssa aquatica*
- Are they isolated?
- ¹ Brown et al. (2010), FIPR Pub. No. 03-149-238

Hypothesis

Surface and/or subsurface flows connect uplands and wetlands on CSAs and to the surrounding hydrological landscapes.

Ft. Meade CSA A

- Located on the Ft. Meade North Mine in Polk County
- **Constructed** ~ 20 years ago
- ~75 hectares in area and ~6 m in height
- Located on unmined land
- Slope trends N-S, slumping toward the SW corner
- Subsidence and collapse have isolated the outfall pipe
- Complex deposits and flow systems....

CSA Deposits

Well-developed, subangular-blocky, clayrich surface layer with desiccation cracks and other macropores ~ 0.5 m in depth

Massive, clay-rich sublayer saturated below $\sim 1.0-2.5 \text{ m} (\text{K}_{\text{sat}} = 10^{-5}-10^{-7} \text{ m/d})$

Vertical Tracer Test

Vertical Tracer Test Results

Horizontal Tracer Test

Horizontal Tracer Test

Horizontal Tracer Test Results – Fan & Receiving Wetland

Horizontal Tracer Test Results – Receiving Wetland

Physical Hydrology of the Receiving Wetland

Conceptual Model & Hypothesized Flowpaths

Chemical Signatures of Water

Rainfall

Ambient

Is downgradient water a mix of rainfall/ambient water and shallow/deep CSA water?

Shallow CSA

Deep CSA

Natural Tracer Results

Mass-Balance Mixing Model

$$Na_{DG} = f_{RA}Na_{RA} + f_{SCSA}Na_{SCSA} + f_{DCSA}Na_{DCSA}$$
$$f_{RA} + f_{SCSA} + f_{DCSA} = 1$$
where
$$Na = \text{sodium concentration}$$
$$f = \text{fractions}$$
$$RA = \text{rainfall/a mbient water}$$
$$SCSA = \text{shallow CSA water}$$
$$DCSA = \text{deep CSA water}$$

Two equations with three unknowns, so the solution is mathematically indeterminate and we can only get a range of plausible solutions.

Mass-Balance Mixing Model Results – Downgradient Water Samples

	Rainfall/Ambient Water	Shallow CSA Water	Deep CSA Water
Dry Season	0.23-0.89	0.01-0.71	0.07-0.20
Wet Season	0.17-0.85	0.06-0.74	0.09-0.13

90% of the samples required at least some shallow and/or deep CSA water in all plausible solutions!!

Conclusions

■ The CSA supports two flow systems.

- Upper layer supports rapid, preferential flow through desiccation cracks and other macropores
- Lower layer supports slow, saturated flow through low-permeability clay matrix (e.g., K = 10⁻⁵-10⁻⁷ m/d)
- Wetlands are hydrologically connected on CSAs and to the surrounding hydrological landscapes through surface and/or subsurface flows.
 - Both shallow and deep CSA source waters contribute to downgradient waters.

Thank You!

Questions?

Not My Job

